Product Description
Common faults of the automobile CV JOINTS/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT:
1. Abnormal noise
When turning left and right, there is a “click” sound of metal knocking on 1 side of the wheel. The noise disappears when driving in a straight line. This is a typical failure phenomenon of the CV JOINT/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT.
2. Stuck
When the vehicle is running at high speed, the wheels resonate. It belongs to the lack of lubrication inside the CV JOINT/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT, and the vibration caused by wear and tear during operation.
3. Fracture
After the CV JOINT/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT is worn to a certain extent, the internal bracket is broken, and the transmission function will be lost, so that the vehicle cannot move after the gear is loose and the clutch is released.
The composition of the CV JOINT/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT universal joint:
The composition of the CV JOINT /CARDAN SHAFT/AXLE SHAFT/HALF SHAFT: 1. Star sleeve (inner raceway); 2. Spherical shell (outer raceway); 3. Steel ball; 4. Clamp; 5.rubber Boot; 6. bracket. CV JOINT/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT constant velocity universal joints can be divided into axially non-telescopic (fixed) CV JOINT universal joints and telescopic CV JOINTS universal joints according to whether the axial direction of the CV JOINT universal joint can move.
Structurally, the internal splines on the inner surface of the star sleeve of the CV JOINT/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT universal joint are connected with the transmission shaft. Its outer surface has 6 arc grooves as the inner raceway of the steel ball, and the outer raceway as the inner surface of the spherical shell. Each of the 6 raceways assembled by the star sleeve and the spherical shell is equipped with a steel ball, and the 6 steel balls are kept on the same level by the cage (CV JOINT). The power is transmitted from the transmission shaft through the steel ball and the spherical shell.
The structural feature of the telescopic CV JOINT universal joint is that the inner wall of the cylindrical shell and the outer surface of the star sleeve adopt cylindrical straight grooves, and the raceway produced by the combination of the 2 adopts steel balls. At the same time, steel balls are also installed in the holes of the CV JOINT/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT. The inner hole of the star sleeve is connected with the input shaft by a spline. This configuration allows movement of the star sleeve in an axial direction corresponding to that of a simple housing.
Materials and technical requirements for main components of HDAG CV JOINTS/CARDAN SHAFT/AXLE SHAFT/HALF SHAFT universal joints:
1. CHINAMFG shell/cylindrical shell: 55#, CF53
1) High-frequency quenching of spline parts to HRC52-58
2) Intermediate frequency quenching of ball hole and ball raceway to HRC58-62
3) Dimensional accuracy and shape tolerance should meet the drawing requirements
4) There should be no cracks in the flaw detection
2. Star sleeve/cage/triple pin: 20CrMnTi
1) Carburizing and quenching – carburizing layer depth 0.7-1.2mm, quenching hardness HRC58-62
2) Dimensional accuracy and shape tolerance should meet the drawing requirements
3) There should be no cracks in the flaw detection
3. Half shaft: 40Cr
1) Carburizing and quenching – carburizing layer depth 0.7-1.2mm, quenching hardness HRC52-58
2) Dimensional accuracy and shape error meet the drawing requirements
3) There should be no cracks in the flaw detection
4. Dust cover: Neoprene CR, thermoplastic polyester elastomer TPEE
5. Clamp: stainless steel 1Cr18Ni9Ti or galvanized steel
Product description
CHINAMFG OEM 2 2 2 2 2 AUTO CV JOINT CARDAN SHAFT factory for lada BA3 UAZ GAZ VAZ
Item Name | Auto or car CV JOINT,Universal Joint,CV JOINT INNER OUTER, DRIVE SHAFT, DRIVESHAFT,CV AXLE, JOINT SHAFT ASSEMBLY,CV AXLE JOINT SHAFT, HALF SHAFT, WHEEL BEARING HUB, WHEEL HUB BEARING, WHEEL BEARING | |||||
OEM/REF NO. | 2 2 2 2 2 | |||||
Car Model | For CARDAN lada BA3 UAZ GAZ VAZ | |||||
POSITION | RH/LH/Right/ Left/ Front/Rear | |||||
MOQ | 1 1 | , 2- | 1 | |||
2 | EX-BK1102OT 215215710 051 | EX-BK1102IN2 215 | ||||
96243578 | EX-BK1102OT-3T 215215710 051 | 215914750 | 2 | |||
21591475 82-20-103 | 32-1116J-k | 82-20-103 | ||||
32-1116J-k 2 | 2 2 | SK96257804BK 35711 | 82-20-103 | |||
96391553 93743422 | CV35571 96220402 | EX-BK43578 SK96257804BK | 49541-24 | -01 | -01 | -01 |
2 2 | 3-01 | -01 |
Reference our cv joint packing way,we have full experience to supply different brands all over the world:
Our HDAG CV JOINTS universal joint Drive shafts machining and production workshops:
Our HDAG CV JOINTS universal joint Drive shafts assemble line:
Our semi finished CV JOINT universal joint Drive shaft in stock before packing and shipment:
HDAG CV JOINTS universal joint Drive shafts pull push force and tensile testing, assemble Testing, full size tolerance testing:
I. We only do OEM, produce high precisional Auto CV JOINT,Universal Joint,Car CV JOINT INNER OUTER, DRIVE SHAFT, DRIVESHAFT,CV AXLE, JOINT SHAFT ASSEMBLY,CV AXLE JOINT SHAFT, HALF SHAFT, WHEEL BEARING HUB, WHEEL HUB BEARING, WHEEL BEARING, different with other factories
II.Quality guarantee: We promise to all of our old and new customers: ONE year guarantee or 50,E 1H0498099A/1H57111/357498099EX/357498099EV/357498099E/1J57111D
CHINAMFG :
CHINAMFG :
CHINAMFG :
CHINAMFG : 4342
CHINAMFG : 4342
CHINAMFG : 4342R20
CHINAMFG : 4346R30
CHINAMFG : 4346S50
CHINAMFG : 4346
CHINAMFG : 4347S60
CHINAMFG : 4347U90
CHINAMFG :
CHINAMFG :
CHINAMFG : 434708Z033
CHINAMFG : 434708Z037
CHINAMFG : 391571JJ10
CHINAMFG : 39157117JJ10
CHINAMFG : 3910110JJ10
CHINAMFG : 391Y10
CHINAMFG : 391M570
CHINAMFG : 391N215
CHINAMFG : 391571M311
CHINAMFG : 391571M915
CHINAMFG : 3910140Y10
CHINAMFG : 391014M570
CHINAMFG : 391014M575
CHINAMFG : 391014M771
CHINAMFG : 3910163Y10
CHINAMFG : 391016N215
391012Y175
392112Y070
391J210
CHINAMFG : 391J171
CHINAMFG : 391N275
CHINAMFG : 391J071
CHINAMFG : 391J915
CHINAMFG : 391E478
CHINAMFG : 391012J215
CHINAMFG : 391014N175
CHINAMFG : 391014N177
CHINAMFG : 391014N275
CHINAMFG : 391015J571
CHINAMFG : 391016J571
CHINAMFG : 391016J071
CHINAMFG : 391016J076
CHINAMFG : 391016J915
CHINAMFG : 39101AE415
CHINAMFG : 39101AU415
CHINAMFG : 39101AU416
CHINAMFG : 39101AW110
CHINAMFG : 39101CX116
CHINAMFG : 39101WF715
CHINAMFG : 39101WF716
3921185E
CHINAMFG : 4347Z035
CHINAMFG : 434708Z039
191498103A
191498103C
191498103CV
191498103CX
191498104C
321498103D
357498103
357498103A
357498103V
357498103X
357498350X
191498103
1K0498103
VAG :
,96396134,512395
CHINAMFG : 391V70A
CHINAMFG : 391013U505
CHINAMFG : 391014V01C
CHINAMFG : 391014V51A
CHINAMFG : 391014V70A
CHINAMFG : 392113U
96348790
CHINAMFG : 8111304
CHINAMFG : 86011
CHINAMFG : 9122833
CHINAMFG : 9163595
MAZDA : G571550X
MAZDA : G571560X
MAZDA : G565715
OPEL : 374
VAUXHALL : 571
391
MAZDA : MD1922510
MAZDA : MD1922510A
MAZDA : MD192550X
MAZDA : MD257160XB
33
A
OPEL : 374048
OPEL : 374067
OPEL : 37408
OPEL : 374118
OPEL : 374148
OPEL : 374195
OPEL : 90125876
OPEL : 90157212
OPEL : 95718734
OPEL : 9317340
OPEL : 93173430
SAAB : 4242319
A1683601872
CHINAMFG : 391KD0A
CHINAMFG : 391019Y015
CHINAMFG : 39101CNY015
CHINAMFG : 39211CN,7701349689,7701349839,7701349873
,7701351948,7701352571,7701352571
,7701498918,7701498919,7701498921
3910173N10
HONDA : 44305S04J60
HONDA : 44305S0A960
HONDA : 44305S0AN60
HONDA : 44305S2H571
HONDA : 44305S2H050
HONDA : 44305S2H950
HONDA : 44305S2H951
HONDA : 44305S2HN50
HONDA : 44305S5AJ50
HONDA : 44305S5AJ60
HONDA : 44305S5AJ61
HONDA : 44305S5AJ62
HONDA : 44305S5C950
HONDA : 44305S5CN50
HONDA : 44305S5CN51
HONDA : 44305S7B950
HONDA : 44305S7C950
HONDA : 44305SOA960
HONDA : 44305SOAN60
HONDA : 44306S0A960
HONDA : 44306S0AN60
HONDA : 44306S2H571
HONDA : 44306S2H950
HONDA : 44306S2H951
HONDA : 44306S5AJ51
HONDA : 44306S5AJ61
HONDA : 44306S5AJ62
HONDA : 44306S5C951
HONDA : 44306S5C952
HONDA : 44306S7B950
HONDA : 44306S7C950
HONDA : 44306SOA960
HONDA : 44306SOAN60
326582
FG02-25-500E
FG02-25-600D
FG02-25-600E
44305-SA2-960
39100ED00A
39101ED00A
39101ED005
44571-SH3-J01,44306-SB2-984
39211-CN000
CHINAMFG : 0K558-25-60X
3272.S5
39211-AY125
39101-AX005
39100-AX005
39101-AX000
MAZDA : M 0571 1510A
MAZDA : M 0571 1500C
MAZDA : M 0571 1500D
MAZDA : M 0571 1600A
MAZDA : M 0571 1600B
MAZDA : MD0925500A
MAZDA : MD0925600A
MAZDA : G064-25-600
MAZDA : G564-25-500A
MAZDA : G564-25-600A
MAZDA : G564-25-60X
MAZDA : GR01-25-500
MAZDA : GR01-25-50X
MAZDA : GR01-25-600
MAZDA : GR01-25-60X
MAZDA : GU01-25-500
MAZDA : GU01-25-50XA
MAZDA : GU01-25-50XC
MAZDA : GU01-25-600
MAZDA : GU01-25-60XA
MAZDA : GU01-25-60XD
HONDA : 44014-SNG-000
HONDA : 44305-SDC-A00
HONDA : 44305-SEA-000
HONDA : 44305-SNG-571
HONDA : 44306-SDC-A01
HONDA : 44306-SDE-T00
HONDA : 44306-SEA-000
HONDA : 44306-SNG-571
CHINAMFG : 39100JD24B
CHINAMFG : 39100JD52B
CHINAMFG : 39101JD24B
CHINAMFG : 39101JD52B
CHINAMFG : 39211JA00A
CHINAMFG : 39211JD22B
CHINAMFG : C9211JA00A
CHINAMFG : C9211JD22B
CHINAMFG : C92AAJA00A
CHINAMFG : C92AAJD22B
CHINAMFG : C9B11JA00A
CHINAMFG : C9BAAJA00A
MAZDA : FA8571500A
MAZDA : FA8571600B
MAZDA : FA8125600B
MAZDA : FA8225500A
MAZDA : FD8571500B
MAZDA : FD8571600A
MAZDA : FP0125500C
3272-HY
3272-KW
3273-HQ
3273-KJ
CHINAMFG : 39100-ED105
CHINAMFG : 39100-ED305
CHINAMFG : 39100-ED805
CHINAMFG : 39101-ED105
CHINAMFG : 39101-ED305
CHINAMFG : 39101-ED805
CHINAMFG : 39211-ED100
CHINAMFG : C9211-EL10A
CHINAMFG : KK38825600
CHINAMFG : 49500-25302
CHINAMFG : 49500-25310
CHINAMFG : 49500-25311
CHINAMFG : 49500-25312
CHINAMFG : 49500-25301
CHINAMFG : 49500-25302
CHINAMFG : 49500-25310
CHINAMFG : 49500-25311
CHINAMFG : 49500-25312
LAND ROVER : STC3046
40011-M5626
39100-M7270
39101-M7270
39113-M7275
39112-M7225
LAND ROVER : TDJ00571
CHINAMFG : 49500-25400
CHINAMFG : 49500-25200
CHINAMFG : 49500-25400
LAND ROVER : TDB500110
LAND ROVER : TDJ500030
39101-CA100
39211-CA100
39100-CA100
HONDA : 44305S74E01
HONDA : 44305S74E51
ROVER : GCV1123
ROVER : TFB000070
39211-AY125
39101-AX005
39100-AX005
39101-AX000
CITROEN : 3272TH
CITROEN : 3272WX
CITROEN : 3273QQ
CITROEN : 3273TT
CITROEN : 3273XR
DS : 3272QF
DS : 3272TH
DS : 3273QQ
DS : 3273TT
PEUGEOT : 3272QF
PEUGEOT : 3272TH
PEUGEOT : 3272WX
PEUGEOT : 3273QQ
PEUGEOT : 3273TT
PEUGEOT : 3273XR
39211-CG571
/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
After-sales Service: | Three Years |
---|---|
Condition: | New |
Color: | OEM Standard |
Certification: | CE, ISO, ISO/Ts16949 |
Type: | Universal Joint |
Application Brand: | Nissan, Iveco, Toyota, Ford, Lada Mitsubishi FIAT Opel Peugeot Renault Citroen |
Customization: |
Available
| Customized Request |
---|
How do manufacturers ensure the compatibility of cardan shafts with different equipment?
Manufacturers take several measures to ensure the compatibility of cardan shafts with different equipment. These measures involve careful design, engineering, and manufacturing processes to meet the specific requirements of diverse applications. Let’s explore how manufacturers ensure compatibility:
1. Application Analysis:
– Manufacturers begin by analyzing the application requirements and specifications provided by customers. This analysis includes understanding factors such as torque, speed, misalignment, operating conditions, space limitations, and other specific needs. By evaluating these parameters, manufacturers can determine the appropriate design and configuration of the cardan shaft to ensure compatibility with the equipment.
2. Customization Options:
– Manufacturers offer customization options for cardan shafts to meet the unique requirements of different equipment. This includes providing various lengths, sizes, torque capacities, connection methods, and material options. Customers can work closely with manufacturers to select or design a cardan shaft that fits their specific equipment and ensures compatibility with the system’s power transmission needs.
3. Engineering Expertise:
– Manufacturers employ experienced engineers who specialize in cardan shaft design and engineering. These experts have in-depth knowledge of mechanical power transmission and understand the complexities involved in ensuring compatibility. They use their expertise to design cardan shafts that can handle the specific torque, speed, misalignment, and other parameters required by different equipment.
4. Computer-Aided Design (CAD) and Simulation:
– Manufacturers utilize advanced computer-aided design (CAD) software and simulation tools to model and simulate the behavior of cardan shafts in different equipment scenarios. These tools allow engineers to analyze the stress distribution, bearing performance, and other critical factors to ensure the shaft’s compatibility and performance. By simulating the cardan shaft’s behavior under various loading conditions, manufacturers can optimize its design and validate its compatibility.
5. Quality Control and Testing:
– Manufacturers have stringent quality control processes in place to ensure the reliability, durability, and compatibility of cardan shafts. They conduct thorough testing to verify the performance and functionality of the shafts in real-world conditions. This may involve testing for torque capacity, speed limits, vibration resistance, misalignment tolerance, and other relevant parameters. By subjecting the cardan shafts to rigorous testing, manufacturers can ensure their compatibility with different equipment and validate their ability to deliver reliable power transmission.
6. Adherence to Standards and Regulations:
– Manufacturers follow industry standards and regulations when designing and manufacturing cardan shafts. Compliance with these standards ensures that the shafts meet the necessary safety, performance, and compatibility requirements. Examples of such standards include ISO 9001 for quality management and ISO 14001 for environmental management. By adhering to these standards, manufacturers demonstrate their commitment to producing compatible and high-quality cardan shafts.
7. Collaboration with Customers:
– Manufacturers actively collaborate with customers to understand their equipment and system requirements. They engage in discussions, provide technical support, and offer guidance to ensure the compatibility of the cardan shafts. By fostering a collaborative relationship, manufacturers can address specific challenges and tailor the design and specifications of the shaft to meet the unique requirements of different equipment.
In summary, manufacturers ensure the compatibility of cardan shafts with different equipment through application analysis, customization options, engineering expertise, CAD and simulation tools, quality control and testing, adherence to standards, and collaboration with customers. These measures allow manufacturers to design and produce cardan shafts that meet the specific torque, speed, misalignment, and other requirements of various equipment, ensuring optimal compatibility and efficient power transmission.
Are there any emerging trends in cardan shaft technology, such as lightweight materials?
Yes, there are several emerging trends in cardan shaft technology, including the use of lightweight materials and advancements in design and manufacturing techniques. These trends aim to improve the performance, efficiency, and durability of cardan shafts. Here are some of the notable developments:
1. Lightweight Materials:
– The automotive and manufacturing industries are increasingly exploring the use of lightweight materials in cardan shaft construction. Materials such as aluminum alloys and carbon fiber-reinforced composites offer significant weight reduction compared to traditional steel shafts. The use of lightweight materials helps reduce the overall weight of the vehicle or machinery, leading to improved fuel efficiency, increased payload capacity, and enhanced performance.
2. Advanced Composite Materials:
– Advanced composite materials, such as carbon fiber and fiberglass composites, are being utilized in cardan shafts to achieve a balance between strength, stiffness, and weight reduction. These materials offer high tensile strength, excellent fatigue resistance, and corrosion resistance. By incorporating advanced composites, cardan shafts can achieve reduced weight while maintaining the necessary structural integrity and durability.
3. Enhanced Design and Optimization:
– Advanced computer-aided design (CAD) and simulation techniques are being employed to optimize the design of cardan shafts. Finite element analysis (FEA) and computational fluid dynamics (CFD) simulations allow for better understanding of the structural behavior, stress distribution, and performance characteristics of the shafts. This enables engineers to design more efficient and lightweight cardan shafts that meet specific performance requirements.
4. Additive Manufacturing (3D Printing):
– Additive manufacturing, commonly known as 3D printing, is gaining traction in the production of cardan shafts. This technology allows for complex geometries and customized designs to be manufactured with reduced material waste. Additive manufacturing also enables the integration of lightweight lattice structures, which further enhances weight reduction without compromising strength. The flexibility of 3D printing enables the production of cardan shafts that are tailored to specific applications, optimizing performance and reducing costs.
5. Surface Coatings and Treatments:
– Surface coatings and treatments are being employed to improve the durability, corrosion resistance, and friction characteristics of cardan shafts. Advanced coatings such as ceramic coatings, diamond-like carbon (DLC) coatings, and nanocomposite coatings enhance the surface hardness, reduce friction, and protect against wear and corrosion. These treatments extend the lifespan of cardan shafts and contribute to the overall efficiency and reliability of the power transmission system.
6. Integrated Sensor Technology:
– The integration of sensor technology in cardan shafts is an emerging trend. Sensors can be embedded in the shafts to monitor parameters such as torque, vibration, and temperature. Real-time data from these sensors can be used for condition monitoring, predictive maintenance, and performance optimization. Integrated sensor technology allows for proactive maintenance, reducing downtime and improving the overall operational efficiency of vehicles and machinery.
These emerging trends in cardan shaft technology, including the use of lightweight materials, advanced composites, enhanced design and optimization, additive manufacturing, surface coatings, and integrated sensor technology, are driving advancements in the performance, efficiency, and reliability of cardan shafts. These developments aim to meet the evolving demands of various industries and contribute to more sustainable and high-performing power transmission systems.
How do cardan shafts contribute to power transmission and motion in various applications?
Cardan shafts, also known as propeller shafts or drive shafts, play a significant role in power transmission and motion in various applications. They are widely used in automotive, industrial, and marine sectors to transfer torque and rotational power between non-aligned components. Cardan shafts offer several benefits that contribute to efficient power transmission and enable smooth motion in different applications. Here’s a detailed look at how cardan shafts contribute to power transmission and motion:
1. Torque Transmission:
– Cardan shafts are designed to transmit torque from a driving source, such as an engine or motor, to a driven component, such as wheels, propellers, or machinery. They can handle high torque loads and transfer power over long distances. By connecting the driving and driven components, cardan shafts ensure the efficient transmission of rotational power, enabling the motion of vehicles, machinery, or equipment.
2. Angular Misalignment Compensation:
– One of the key advantages of cardan shafts is their ability to accommodate angular misalignment between the driving and driven components. The universal joints present in cardan shafts allow for flexibility and articulation, compensating for variations in the relative positions of the components. This flexibility is crucial in applications where the driving and driven components may not be perfectly aligned, such as vehicles with suspension movement or machinery with adjustable parts. The cardan shaft’s universal joints enable the transmission of torque even when there are angular deviations, ensuring smooth power transfer.
3. Axial Misalignment Compensation:
– In addition to angular misalignment compensation, cardan shafts can also accommodate axial misalignment between the driving and driven components. Axial misalignment refers to the displacement along the axis of the shafts. The design of cardan shafts with telescopic sections or sliding splines allows for axial movement, enabling the shaft to adjust its length to compensate for variations in the distance between the components. This feature is particularly useful in applications where the distance between the driving and driven components can change, such as vehicles with adjustable wheelbases or machinery with variable attachment points.
4. Vibration Damping:
– Cardan shafts contribute to vibration damping in various applications. The flexibility provided by the universal joints helps absorb and dampen vibrations generated during operation. By allowing slight angular deflection and accommodating misalignment, cardan shafts help reduce the transmission of vibrations from the driving source to the driven component. This vibration damping feature improves the overall smoothness of operation, enhances ride comfort in vehicles, and reduces stress on machinery.
5. Balancing:
– To ensure smooth and efficient operation, cardan shafts are carefully balanced. Even minor imbalances in rotational components can result in vibration, noise, and reduced performance. Balancing the cardan shaft minimizes these issues by redistributing mass along the shaft, eliminating or minimizing vibrations caused by centrifugal forces. Proper balancing improves the overall stability, reduces wear on bearings and other components, and extends the lifespan of the shaft and associated equipment.
6. Safety Features:
– Cardan shafts often incorporate safety features to protect against mechanical failures. For example, some cardan shafts have guards or shielding to prevent contact with rotating components, reducing the risk of accidents or injuries. In applications where excessive forces or torques can occur, cardan shafts may include safety mechanisms such as shear pins or torque limiters. These features are designed to protect the shaft and other components from damage by shearing or disengaging in case of overload or excessive torque.
7. Versatility in Applications:
– Cardan shafts offer versatility in their applications. They are widely used in various industries, including automotive, agriculture, mining, marine, and industrial sectors. In automotive applications, cardan shafts transmit power from the engine to the wheels, enabling vehicle propulsion. In industrial machinery, they transfer power between motors and driven components such as conveyors, pumps, or generators. In marine applications, cardan shafts transmit power from the engine to propellers, enabling ship propulsion. The versatility of cardan shafts makes them suitable for a wide range of power transmission needs in different environments.
In summary, cardan shafts are essential components that contribute to efficient power transmission and motion in various applications. Their ability to accommodate angular and axial misalignment, dampen vibrations, balance rotational components, and incorporate safety features enables smooth and reliable operation in vehicles, machinery, and equipment. The versatility of cardan shafts makes them a valuable solution for transmitting torque and rotational power in diverse industries and environments.
editor by CX 2024-04-30