China high quality CZPT SWC-Bh Types Cardan Shaft for Paper Machinery

Product Description

Huading SWC-BH types cardan shaft for paper machinery

SWC-BH types Cardan shaft is a kind of the most commonly used with the characteristics of its structure can not in the same axis or axis angle or larger axial movement of 2 large equiangular continuous rotary speed, and reliably transfer torque and motion.

It can be widely used in paper machinery, metallurgy, lifting, transportation, mining, petroleum, shipbuilding, coal, rubber, and other heavy machinery industry machinery shaft in the transmission torque.

♦Basic Parameter And Main Dimension

 Model   Tn
kN • m

T.
kN • m

p
(.)
LS
mm
Lmin                           Size
                           mm
I kg. m2       m
      kg
Di
js11
d2
H7
Da Lm n-d k t b
h9
g Lmin 100mm Lmin 100mm
SWC58BH 58 0.15 0.075 ≤22 35 325 47 30 38 35 4-5 3.5 1.5 2.2
SWC65BH 65 0.25 0.125 ≤22 40 360 52 35 42 46 4-6 4.5 1.7 3.0
SWC75BH 75 0.50 0.25 ≤22 40 395 62 42 50 58 6-6 5.5 2.0 5.0
SWC90BH 90 1.0 0.50 ≤22 45 435 74.5 47 54 58 4-8 6.0 2.5 6.6
SWC100BH 100 1.5 0.75 ≤25 55 390 84 57 60 58 6-9 7 2.5 0.0044 0.00019 6.1 0.35
SWC120BH 120 2.5 1.25 ≤25 80 485 102 75 70 68 8-11 8 2.5 0.5719 0.00044 10.8 0.55
SWC150BH 150 5 2.5 ≤25 80 590 13.0 90 89 80 8-13 10 3.0 0.0423 0.00157 24.5 0.85
SWC160BH 160 10 5 ≤25 80 660 137 100 95 110 8-15 15 3.0 20 12 0.1450 0.0060 68 1.72
SWC180BH 180 20 10 ≤25 100 810 155 105 114 130 8-17 17 5.0 24 14 0.1750 0.0070 70 2.8
SWC200BH 200 32 16 ≤15 110 860 170 120 127 135 8-17 19 5.0 28 16 0.3100 0.0130 86 3.6
SWC225BH 225 40 20 ≤15 140 920 196 135 152 120 8-17 20 5.0 32 9.0 0.5380 0.5714 122 4.9
SWC250BH 250 63 31.5 ≤15 140 1035 218 150 168 140 8-19 25 6.0 40 12.5 0.9660 0.5717 172 5.3
SWC285BH 285 90 45 ≤15 140 1190 245 170 194 160 8-21 27 7.0 40 15.0 2.0110 0.571 263 6.3
SWC315BH 315 125 63 ≤15 140 1315 280 185 219 180 10-23 32 8.0 40 15.0 3.6050 0.571 382 8.0
SWC350BH 350 180 90 ≤15 150 1410 310 210 267 194 10-23 35 8.0 50 16.0 7.571 0.2219 582 15.0
SWC390BH 390 250 125 ≤15 170 1590 345 235 267 215 10-25 40 8.0 70 18.0 12.164 0.2219 738 15.0
SWC440BH 440 355 180 ≤15 190 1875 390 255 325 260 16-28 42 10 80 20.0 21.420 0.4744 1190 21.7
SWC490BH 490 500 250 ≤15 190 1985 435 275 325 270 16-31 47 12 90 22.5 32.860 0.4744 1452 21.7
SWC550BH 550 710 355 ≤15 240 2300 492 320 426 305 16-31 50 12 100 22.5 68.920 1.3570 2380 34

·Marking Example:
  SWC 350BH Standard telescopic welded Cardan shaft, Length=1610mm
  SWC 350BH*1610cardan shaft JB5513-91
·Note:
1. Tf-Torque allowed by fatigue strength under variable load

2. Lmin-Minimum length after shortening
3. L-Installation length as required

♦Product Show

♦Other Products List

Transmission Machinery 
Parts Name
Model
Universal Coupling WS, WSD, WSP
Cardan Shaft SWC,SWP,SWZ
Tooth Coupling CL,CLZ,GCLD,GIICL,
GICL,NGCL,GGCL,GCLK
Disc Coupling JMI,JJ,JMII, JMIIJ
High Flexible Coupling LM
Chain Coupling GL
Jaw Coupling LT
Grid Coupling JS

Our Company
Our company supplies different kinds of products. High quality and reasonable price. We stick to the principle of “quality first, service first, continuous improvement and innovation to meet the customers” for the management and “zero defect, zero complaints” as the quality objective. To perfect our service, we provide products of good quality at a reasonable price.

Welcome to customize products from our factory and please provide your design drawings or contact us if you need other requirements.

Our Services
1. Design Services
Our design team has experience in Cardan shafts relating to product design and development. If you have any needs for your new product or wish to make further improvements, we are here to offer our support.

2. Product Services
raw materials → Cutting → Forging →Rough machining →Shot blasting →Heat treatment →Testing →Fashioning →Cleaning→ Assembly→Packing→Shipping

3. Samples Procedure
We could develop the sample according to your requirement and amend the sample constantly to meet your need.

4. Research & Development
We usually research the new needs of the market and develop new models when there are new cars in the market.

5. Quality Control
Every step should be a particular test by Professional Staff according to the standard of ISO9001 and TS16949.

FAQ
Q 1: Are you a trading company or a manufacturer?
A: We are a professional manufacturer specializing in manufacturing
various series of couplings.

Q 2:Can you do OEM?
Yes, we can. We can do OEM & ODM for all customers with customized PDF or AI format artwork.

Q 3:How long is your delivery time?
Generally, it is 20-30 days if the goods are not in stock. It is according to quantity.

Q 4: Do you provide samples? Is it free or extra?
Yes, we could offer the sample but not for free. Actually, we have an excellent price principle, when you make the bulk order the cost of the sample will be deducted.

Q 5: How long is your warranty?
A: Our Warranty is 12 months under normal circumstances.

Q 6: What is the MOQ?
A: Usually our MOQ is 1pcs.

Q 7: Do you have inspection procedures for coupling?
A:100% self-inspection before packing.

Q 8: Can I have a visit to your factory before the order?
A: Sure, welcome to visit our factory.

Q 9: What’s your payment?
A:1) T/T. 

Contact Us

Web: huadingcoupling
Add: No.11 HangZhou Road,Chengnan park,HangZhou City,ZheJiang Province,China
  /* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Standard
Shaft Hole: as Your Requirement
Torque: as Your Requirement
Samples:
US$ 500/Piece
1 Piece(Min.Order)

|

Order Sample

Customization:
Available

|

Customized Request

.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}

Shipping Cost:

Estimated freight per unit.







about shipping cost and estimated delivery time.
Payment Method:







 

Initial Payment



Full Payment
Currency: US$
Return&refunds: You can apply for a refund up to 30 days after receipt of the products.

cardan shaft

How do cardan shafts ensure efficient power transfer while maintaining balance?

Cardan shafts are designed to ensure efficient power transfer while maintaining balance between the driving and driven components. They employ various mechanisms and features that contribute to both aspects. Let’s explore how cardan shafts achieve efficient power transfer and balance:

1. Universal Joints:

– Cardan shafts utilize universal joints, also known as U-joints, to transmit torque from the driving component to the driven component. Universal joints consist of a cross-shaped yoke with needle bearings at each end. These needle bearings allow the joints to pivot and accommodate angular misalignment between the driving and driven components. By allowing for flexibility in movement, universal joints ensure efficient power transfer even when the components are not perfectly aligned, minimizing energy losses and maintaining balance.

2. Misalignment Compensation:

– Cardan shafts are designed to compensate for misalignment between the driving and driven components. The universal joints, along with slip yokes and telescopic sections, allow the shaft to adjust its length and accommodate variations in alignment. This misalignment compensation capability ensures that the cardan shaft can transmit power smoothly and efficiently, reducing stress on the components and maintaining balance during operation.

3. Balanced Design:

– Cardan shafts are engineered with a balanced design to minimize vibration and maintain smooth operation. The shaft tubes are typically symmetrically constructed, and the universal joints are positioned to distribute the mass evenly. This balanced design helps to reduce vibration and minimize the occurrence of unbalanced forces that can negatively impact power transfer and overall system performance. By maintaining balance, cardan shafts contribute to efficient power transmission and improve the lifespan of the components involved.

4. High-Quality Materials and Manufacturing:

– The materials used in the construction of cardan shafts, such as steel or aluminum alloy, are carefully selected for their strength, durability, and ability to maintain balance. High-quality materials ensure that the shafts can withstand the torque and operational stresses without deformation or failure, promoting efficient power transfer. Additionally, precise manufacturing processes and quality control measures are employed to ensure that the cardan shafts are accurately balanced during production, further enhancing their efficiency and balance.

5. Regular Maintenance and Inspection:

– To ensure continued efficient power transfer and balance, regular maintenance and inspection of cardan shafts are essential. This includes periodic lubrication of the universal joints, checking for wear or damage, and addressing any misalignment issues. Regular maintenance helps to preserve the balance of the shaft and ensures optimal performance and longevity.

Overall, cardan shafts ensure efficient power transfer while maintaining balance through the use of universal joints for torque transmission, misalignment compensation mechanisms, balanced design, high-quality materials, and regular maintenance. By incorporating these features, cardan shafts contribute to the smooth operation, reliability, and longevity of various applications in automotive, industrial, and other sectors that rely on efficient power transmission.

cardan shaft

How do cardan shafts enhance the performance of trucks and heavy-duty vehicles?

Cardan shafts play a significant role in enhancing the performance of trucks and heavy-duty vehicles. These vehicles often operate under demanding conditions, requiring robust and efficient power transmission systems. Here’s how cardan shafts contribute to the performance of trucks and heavy-duty vehicles:

1. Torque Transmission:

– Cardan shafts enable the efficient transmission of torque from the engine or transmission to the drivetrain and wheels of trucks and heavy-duty vehicles. They can handle high torque loads, ensuring that power is effectively transferred to propel the vehicle forward. This efficient torque transmission enhances acceleration, towing capacity, and overall performance.

2. Power Distribution:

– Trucks and heavy-duty vehicles often have multiple axles or wheels. Cardan shafts distribute power to each axle or wheel, ensuring balanced power delivery. This helps improve traction, stability, and control, especially when carrying heavy loads or operating on challenging terrains. By optimizing power distribution, cardan shafts enhance the vehicle’s performance and handling characteristics.

3. Flexibility and Misalignment Compensation:

– Cardan shafts are designed to accommodate misalignment between the engine, transmission, and drivetrain components. They can handle angular misalignment, parallel offset, and axial displacement. This flexibility allows for smooth power transmission even when the components are not perfectly aligned, reducing stress on the drivetrain and improving performance. It also helps absorb vibrations and shocks, enhancing driver comfort and reducing wear on other vehicle components.

4. Durability and Reliability:

– Heavy-duty vehicles operate in rugged and demanding conditions, such as construction sites, mining operations, or long-haul transportation. Cardan shafts are built to withstand these harsh environments, providing durability and reliability. They are designed using robust materials and undergo rigorous testing to ensure they can handle the high torque, heavy loads, and continuous operation that trucks and heavy-duty vehicles require. This reliability minimizes downtime and maintenance, improving overall vehicle performance.

5. Powertrain Efficiency:

– Cardan shafts help optimize powertrain efficiency in trucks and heavy-duty vehicles. By efficiently transmitting torque and minimizing power loss during power transfer, they contribute to improved fuel economy and reduced energy consumption. This increased efficiency translates to cost savings and reduced environmental impact.

6. Weight Reduction:

– Cardan shafts offer weight reduction benefits for trucks and heavy-duty vehicles. The use of lightweight materials and optimized designs helps reduce the overall weight of the propulsion system. Reduced weight improves fuel efficiency, increases payload capacity, and enhances vehicle maneuverability. Cardan shafts’ compactness and space-saving design also allow for more efficient packaging of the drivetrain components.

7. Adaptability to Various Configurations:

– Trucks and heavy-duty vehicles come in different configurations, such as rear-wheel drive (RWD), front-wheel drive (FWD), or all-wheel drive (AWD). Cardan shafts can be tailored to suit these various drivetrain setups, providing the necessary torque transmission and power distribution for each configuration. This adaptability allows manufacturers to optimize vehicle performance based on specific application requirements.

Overall, cardan shafts enhance the performance of trucks and heavy-duty vehicles by enabling efficient torque transmission, balancing power distribution, compensating for misalignment, providing durability and reliability, optimizing powertrain efficiency, reducing weight, and adapting to various drivetrain configurations. Their role in improving acceleration, towing capacity, traction, and fuel economy contributes to the overall performance and success of these vehicles in demanding environments.

cardan shaft

How do cardan shafts handle variations in angles, torque, and alignment?

Cardan shafts, also known as propeller shafts or drive shafts, are designed to handle variations in angles, torque, and alignment between the driving and driven components. They possess unique structural and mechanical features that enable them to accommodate these variations effectively. Let’s explore how cardan shafts handle each of these factors:

Variations in Angles:

– Cardan shafts are specifically designed to handle angular misalignment between the driving and driven components. This misalignment can occur due to factors such as changes in suspension height, flexing of the chassis, or uneven terrain. The universal joints used in cardan shafts allow for angular movement by employing a cross-shaped yoke with needle bearings at each end. These needle bearings facilitate the rotation and flexibility required to compensate for angular misalignment. As a result, the cardan shaft can maintain a consistent power transmission despite variations in angles, ensuring smooth and efficient operation.

Variations in Torque:

– Cardan shafts are engineered to withstand and transmit varying levels of torque. Torque variations may arise from changes in load, speed, or resistance encountered during operation. The robust construction of the shaft tubes, coupled with the use of universal joints and slip yokes, allows the cardan shaft to handle these torque fluctuations. The shaft tubes are typically made of durable and high-strength materials, such as steel or aluminum alloy, which can withstand high torsional forces without deformation or failure. Universal joints and slip yokes provide flexibility and allow the shaft to adjust its length, absorbing torque fluctuations and ensuring reliable power transmission.

Variations in Alignment:

– Cardan shafts are adept at compensating for misalignment between the driving and driven components that can occur due to manufacturing tolerances, assembly errors, or structural changes over time. The universal joints present in cardan shafts play a crucial role in accommodating misalignment. The needle bearings within the universal joints allow for slight axial movement, permitting misaligned components to remain connected without hindering torque transmission. Additionally, slip yokes, which are often incorporated into cardan shaft systems, provide axial adjustability, allowing the shaft to adapt to changes in the distance between the driving and driven components. This flexibility in alignment compensation ensures that the cardan shaft can effectively transmit power even when the components are not perfectly aligned.

Overall, cardan shafts handle variations in angles, torque, and alignment through the combination of universal joints, slip yokes, and robust shaft tube construction. These features allow the shaft to accommodate angular misalignment, absorb torque fluctuations, and compensate for changes in alignment. By providing flexibility and reliable power transmission, cardan shafts contribute to the smooth operation and longevity of various systems, including automotive drivetrains, industrial machinery, and marine propulsion systems.

China high quality CZPT SWC-Bh Types Cardan Shaft for Paper Machinery  China high quality CZPT SWC-Bh Types Cardan Shaft for Paper Machinery
editor by CX 2024-05-08