Product Description
Agricultural Tractor 540 Cardan Drive Wide Angle PTO Shaft with CE Certification Slip Cutch Yoke Tube Universal U joint For Farm Machines
Product Description
Model Number | 05(Push Pin)+RA2(Overrunning Clutch) |
Function | Power transmission |
Use | Tractors and various farm implements |
Yoke Type | push pin/quick release/ball attachment/collar/double push pin/bolt pins/split pins |
Processing Of Yoke | Forging |
Tube Type | Trianglar/star/lemon |
Spline Type | Spline Type |
Materlal and Surface Treatment |
|
Cross shaft |
Heat treatment of 20Cr2Ni4A forging |
Bearing cup |
20CrMOTi forging heat treatment |
Flange fork |
ZG35CrMo, steel casting |
Spline shaft |
42GrMo forging heat treatment |
Spline bushing |
35CrM0 forging heat treatment |
Sleeve body |
42CrMo forging |
Surface treatment: |
spraying |
Flat key, positioning ring |
42GrMo forging |
The above are standard models and materials.
If you have special supporting requirements, you can customize production according to customer needs.
Please click here to consult us!
Technological Process
Workblank Cuttinh>Workblank Preparation>Forging Preparation>Turn-milling Machining>Drill Earhole>Boring Earhole>Spline Broaching>Grove Milling>Cutting>Pressure Pipe>Drill Pin>Burring>U J Assembly>Driving Shaft assembly >-Painting & Marking> Plastic Shield Assembly>Packing> Loading> Deliverying
Company Profile
We is located in HangZhou City, HangZhou, near the first tier cities of HangZhou and ZheJiang . Convenient transportation and beautiful environment.
We are committed to the production and research and development of PTO, agricultural machinery transmission shafts, and all supporting accessories. Currently, we have established long-term and close cooperation with countries in Europe (Italy, Germany, France, Ukraine, etc.), America (United States, Mexico, Brazil, Chile, etc.), Russia, Southeast Asia (Thailand, Malaysia, Indonesia, etc.), Oceania (New Zealand, Australia, etc.), and other countries in the foreign market, The domestic market mainly focuses on the matching of agricultural machinery, and vigorously explores the development of agricultural machinery in the ZheJiang market. At present, the factory covers an area of over 20 acres of farmland and has over 100 long-term employees (including 7 engineers). The company already has ISO, CE and other certificates.
Factory workshop
Lathe equipment
Test equipment
Package
Certifications
Related Products
1.Supply agricultural machinery transmission shaft series from 1 to 8, and various supporting components.
U joint, Tube, Safty Shield, Yokes, Torque Limited, Wide Angle Joint, Free Wheel ect Universal joint, shaft, dust cover, fork, torque
Limiter, wide-angle fork, overrunning clutch…
2.Supply all kinds of Plastic Guard
Offer Different Color of Safety Shield Including the Tubes Inside. Safty Shied Types and Colors According to Your Requirements
3.PTO Booklet,CE Sign,Notations and Sticker
4. We also have all products related to agricultural machinery in Hong Kong, including agricultural gearboxes used in conjunction with PTO shafts
/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
Type: | Pto Shaft |
---|---|
Usage: | Agricultural Products Processing, Farmland Infrastructure, Tillage, Harvester, Planting and Fertilization, Grain Threshing, Cleaning and Drying |
Material: | Carbon Steel |
Power Source: | Electricity |
Weight: | 5lbs |
After-sales Service: | 5 Years |
Can cardan shafts be adapted for use in both automotive and industrial settings?
Yes, cardan shafts can be adapted for use in both automotive and industrial settings. They are versatile components that offer efficient power transmission and can be customized to meet the specific requirements of various applications. Let’s explore how cardan shafts can be adapted for both automotive and industrial settings:
1. Automotive Applications:
– Cardan shafts have long been used in automotive applications, especially in vehicles with rear-wheel drive or all-wheel drive systems. They are commonly found in cars, trucks, SUVs, and commercial vehicles. In the automotive sector, cardan shafts are primarily used to transmit torque from the engine or transmission to the differential or axle, allowing power to be distributed to the wheels. They provide a reliable and efficient means of transferring power, even in vehicles that experience varying loads, vibration, and misalignment. Cardan shafts in automotive applications are typically designed to handle specific torque and speed requirements, taking into account factors such as vehicle weight, horsepower, and intended use.
2. Industrial Applications:
– Cardan shafts are also widely used in various industrial settings where torque needs to be transmitted between two rotating components. They are employed in a diverse range of industries, including manufacturing, mining, agriculture, construction, and more. In industrial applications, cardan shafts are utilized in machinery, equipment, and systems that require efficient power transmission over long distances or in situations where angular misalignment is present. Industrial cardan shafts can be customized to accommodate specific torque, speed, and misalignment requirements, considering factors such as the load, rotational speed, operating conditions, and space constraints. They are commonly used in applications such as conveyors, pumps, generators, mixers, crushers, and other industrial machinery.
3. Customization and Adaptability:
– Cardan shafts can be adapted for various automotive and industrial applications through customization. Manufacturers offer a range of cardan shaft options with different lengths, sizes, torque capacities, and speed ratings to suit specific requirements. Universal joints, slip yokes, telescopic sections, and other components can be selected or designed to meet the demands of different settings. Additionally, cardan shafts can be made from different materials, such as steel or aluminum alloy, depending on the application’s needs for strength, durability, or weight reduction. By collaborating with cardan shaft manufacturers and suppliers, automotive and industrial engineers can adapt these components to their specific settings, ensuring optimal performance and reliability.
4. Consideration of Application-Specific Factors:
– When adapting cardan shafts for automotive or industrial settings, it is crucial to consider application-specific factors. These factors may include torque requirements, speed limits, operating conditions (temperature, humidity, etc.), space limitations, and the need for maintenance and serviceability. By carefully evaluating these factors and collaborating with experts, engineers can select or design cardan shafts that meet the unique demands of the automotive or industrial application.
In summary, cardan shafts can be adapted and customized for use in both automotive and industrial settings. Their versatility, efficient power transmission capabilities, and ability to accommodate misalignment make them suitable for a wide range of applications. By considering the specific requirements and collaborating with cardan shaft manufacturers, engineers can ensure that these components provide reliable and efficient power transfer in automotive and industrial systems.
How do cardan shafts handle variations in load, speed, and misalignment during operation?
Cardan shafts are designed to handle variations in load, speed, and misalignment during operation. They incorporate specific features and mechanisms to accommodate these factors and ensure efficient power transmission. Let’s explore how cardan shafts handle these variations:
1. Load Variation:
– Cardan shafts are designed to transmit torque and handle variations in load. The torque capacity of the shaft is determined based on the application’s requirements, and the shaft is manufactured using materials and dimensions that can withstand the specified loads. The design and construction of the shaft, including the selection of universal joints and slip yokes, are optimized to handle the anticipated loads. By choosing appropriate material strengths and dimensions, cardan shafts can effectively transmit varying loads without failure or excessive deflection.
2. Speed Variation:
– Cardan shafts can accommodate variations in rotational speed between the driving and driven components. The universal joints, which connect the shaft’s segments, allow for angular movement, thereby compensating for speed differences. The design of the universal joints and the use of needle bearings or roller bearings enable smooth rotation and efficient power transmission even at varying speeds. However, it’s important to note that excessively high speeds can introduce additional challenges such as increased vibration and wear, which may require additional measures such as balancing and lubrication.
3. Misalignment Compensation:
– Cardan shafts are specifically designed to handle misalignment between the driving and driven components. They can accommodate angular misalignment, parallel offset, and axial displacement to a certain extent. The universal joints in the shaft assembly allow for flexibility and articulation, enabling the shaft to transmit torque even when the components are not perfectly aligned. The design of the universal joints, along with their bearing arrangements and seals, allows for smooth rotation and compensation of misalignment. Manufacturers specify the maximum allowable misalignment angles and displacements for cardan shafts, and exceeding these limits can lead to increased wear, vibration, and reduced efficiency.
4. Telescopic Design:
– Cardan shafts often feature a telescopic design, which allows for axial movement and adjustment to accommodate variations in distance between the driving and driven components. This telescopic design enables the shaft to handle changes in length during operation, such as when the vehicle or equipment undergoes suspension movement or when the drivetrain components experience positional changes. The telescopic mechanism ensures that the shaft remains properly connected and engaged, maintaining power transmission efficiency even when there are fluctuations in distance or position.
5. Regular Maintenance:
– To ensure optimal performance and longevity, cardan shafts require regular maintenance. This includes inspections, lubrication of universal joints and slip yokes, and monitoring for wear or damage. Regular maintenance helps identify and address any issues related to load, speed, or misalignment variations, ensuring that the shaft continues to function effectively under changing operating conditions.
Overall, cardan shafts handle variations in load, speed, and misalignment through their design features such as universal joints, telescopic design, and flexibility. By incorporating these elements, along with proper material selection, lubrication, and maintenance practices, cardan shafts can reliably transmit torque and accommodate the changing operating conditions in vehicles and equipment.
What is a cardan shaft and how does it function in vehicles and machinery?
A cardan shaft, also known as a propeller shaft or drive shaft, is a mechanical component used in vehicles and machinery to transmit torque and rotational power between two points that are not in line with each other. It consists of a tubular shaft with universal joints at each end, allowing for flexibility and accommodating misalignment between the driving and driven components. The cardan shaft plays a crucial role in transferring power from the engine or power source to the wheels or driven machinery. Here’s how it functions in vehicles and machinery:
1. Torque Transmission:
– In vehicles, the cardan shaft connects the transmission or gearbox to the differential, which then distributes torque to the wheels. When the engine generates rotational power, it is transmitted through the transmission to the cardan shaft. The universal joints at each end of the shaft allow for angular misalignment and compensate for variations in the suspension, axle movement, and road conditions. As the cardan shaft rotates, it transfers torque from the transmission to the differential, enabling power delivery to the wheels.
– In machinery, the cardan shaft serves a similar purpose of transmitting torque between the power source and driven components. For example, in agricultural equipment, the cardan shaft connects the tractor’s PTO (Power Take-Off) to various implements such as mowers, balers, or tillers. The rotational power from the tractor’s engine is transferred through the PTO driveline to the cardan shaft, which then transmits the torque to the driven machinery, enabling their operation.
2. Flexibility and Compensation:
– The cardan shaft’s design with universal joints provides flexibility and compensates for misalignment between the driving and driven components. The universal joints allow the shaft to bend and articulate while maintaining a continuous torque transmission. This flexibility is essential in vehicles and machinery where the driving and driven components may be at different angles or positions due to suspension movement, axle articulation, or uneven terrain. The cardan shaft absorbs these variations and ensures smooth power delivery without causing excessive stress or vibration.
3. Balancing and Vibration Control:
– Cardan shafts also contribute to balancing and vibration control in vehicles and machinery. The rotation of the shaft generates centrifugal forces, and any imbalance can result in vibration and reduced performance. To counterbalance this, cardan shafts are carefully designed and balanced to minimize vibration and provide smooth operation. Additionally, the universal joints help in absorbing minor vibrations and reducing their transmission to the vehicle or machinery.
4. Length Adjustment:
– Cardan shafts offer the advantage of adjustable length, allowing for variations in the distance between the driving and driven components. This adjustability is particularly useful in vehicles and machinery with adjustable wheelbases or variable attachment points. By adjusting the length of the cardan shaft, the driveline can be appropriately sized and positioned to accommodate different configurations, ensuring optimal power transmission efficiency.
5. Safety Features:
– Cardan shafts in vehicles and machinery often incorporate safety features to protect against mechanical failures. These may include shielding or guards to prevent contact with rotating components, such as the driveshaft or universal joints. In the event of a joint failure or excessive force, some cardan shafts may also incorporate shear pins or torque limiters to prevent damage to the driveline and protect other components from excessive loads.
In summary, a cardan shaft is a tubular component with universal joints at each end used to transmit torque and rotational power between non-aligned driving and driven components. It provides flexibility, compensates for misalignment, and enables torque transmission in vehicles and machinery. By efficiently transferring power, accommodating variations, and balancing vibrations, cardan shafts play a critical role in ensuring smooth and reliable operation in a wide range of applications.
editor by CX 2024-02-17
China Best Sales Agricultural Pto Drive Shaft Tractor Gearbox for Machines Rake Baler 7HP Petrol Power Weeder Gear Tractor Agricultural Farm Manufacture Gearboxes Truck Car Part with Good quality
Product Description
Our OEM/ODM firm gives you what best matches your needs
Our item can be adapted: see the diagram and the chart beneath. Remember to give us the necessary product name so we can offer you the most accurate quotation.
This chart if for reference, if you need to have distinct characteristics, provide us all appropriate specifics for your project and we will be happy to help you locating the merchandise matching your want at the greatest good quality with the cheapest value.
You should notice the price tag and the MOQ may possibly fluctuate regarding the solution you selected: do not be reluctant to speak to us to know more!
Extensive use for agricultural equipment
Ensure: Large precision, higher dress in resistance, lower noise, smooth and regular, higher toughness
Our manufacturing facility
Comply with us
Diverse parts of the push shaft
The driveshaft is the versatile rod that transmits torque amongst the transmission and the differential. The phrase travel shaft may possibly also refer to a cardan shaft, a transmission shaft or a propeller shaft. Parts of the drive shaft are varied and incorporate:
The driveshaft is a adaptable rod that transmits torque from the transmission to the differential
When the driveshaft in your automobile starts to fall short, you ought to look for expert assist as soon as feasible to repair the dilemma. A destroyed driveshaft can usually be read. This sounds sounds like “tak tak” and is typically more pronounced for the duration of sharp turns. Nevertheless, if you can’t hear the sound while driving, you can verify the issue of the car oneself.
The travel shaft is an crucial portion of the car transmission technique. It transfers torque from the transmission to the differential, which then transfers it to the wheels. The program is complex, but still vital to the appropriate functioning of the vehicle. It is the versatile rod that connects all other areas of the drivetrain. The driveshaft is the most essential component of the drivetrain, and comprehending its purpose will make it easier for you to correctly keep your auto.
Driveshafts are used in diverse vehicles, such as entrance-wheel push, four-wheel push, and entrance-engine rear-wheel drive. Drive shafts are also utilised in bikes, locomotives and ships. Widespread entrance-motor, rear-wheel generate motor vehicle configurations are demonstrated beneath. The kind of tube utilized depends on the size, speed and power of the push shaft.
The output shaft is also supported by the output hyperlink, which has two identical supports. The upper part of the travel module supports a massive tapered roller bearing, even though the reverse flange end is supported by a parallel roller bearing. This assures that the torque transfer between the differentials is successful. If you want to understand far more about automobile differentials, read this article.
It is also recognized as cardan shaft, propeller shaft or drive shaft
A propshaft or propshaft is a mechanical ingredient that transmits rotation or torque from an engine or transmission to the entrance or rear wheels of a motor vehicle. Due to the fact the axes are not directly related to each and every other, it should allow relative motion. Due to the fact of its part in propelling the car, it is crucial to realize the factors of the driveshaft. Right here are some widespread sorts.
Isokinetic Joint: This variety of joint ensures that the output speed is the exact same as the input velocity. To attain this, it have to be mounted back-to-again on a plane that bisects the push angle. Then mount the two gimbal joints back again-to-again and modify their relative positions so that the velocity adjustments at 1 joint are offset by the other joint.
Driveshaft: The driveshaft is the transverse shaft that transmits electrical power to the entrance wheels. Driveshaft: The driveshaft connects the rear differential to the transmission. The shaft is part of a generate shaft assembly that consists of a travel shaft, a slip joint, and a common joint. This shaft gives rotational torque to the push shaft.
Dual Cardan Joints: This variety of driveshaft utilizes two cardan joints mounted back again-to-back. The centre yoke replaces the intermediate shaft. For the duplex common joint to operate appropriately, the angle among the enter shaft and the output shaft should be equivalent. Once aligned, the two axes will work as CV joints. An improved model of the dual gimbal is the Thompson coupling, which delivers somewhat a lot more performance at the price of included complexity.
It transmits torque at various angles in between driveline components
A vehicle’s driveline is made up of a variety of parts that transmit energy from the engine to the wheels. This contains axles, propshafts, CV joints and differentials. Collectively, these factors transmit torque at different angles amongst driveline components. A car’s powertrain can only operate correctly if all its factors work in harmony. Without having these factors, electricity from the motor would cease at the transmission, which is not the case with a car.
The CV driveshaft design and style provides smoother operation at greater working angles and extends differential and transfer situation daily life. The assembly’s central pivot position intersects the joint angle and transmits clean rotational energy and surface area pace via the drivetrain. In some instances, the C.V. “U” connector. Drive shafts are not the best choice because the joint angles of the “U” joints are often considerably unequal and can trigger torsional vibration.
Driveshafts also have different names, like driveshafts. A car’s driveshaft transfers torque from the transmission to the differential, which is then distributed to other driveline parts. A electricity just take-off (PTO) shaft is similar to a prop shaft. They transmit mechanical power to related components. They are critical to the overall performance of any vehicle. If any of these parts are ruined, the entire drivetrain will not perform appropriately.
A car’s powertrain can be complicated and hard to preserve. Adding vibration to the drivetrain can result in premature wear and shorten all round life. This driveshaft suggestion focuses on driveshaft assembly, operation, and maintenance, and how to troubleshoot any problems that may come up. Including suitable answers to pain points can increase the daily life of the driveshaft. If you happen to be in the marketplace for a new or employed car, be positive to go through this article.
it is composed of many areas
“It is made up of numerous areas” is a single of seven modest prints. This phrase consists of 10 letters and is 1 of the hardest words and phrases to say. Nonetheless, it can be described basically by comparing it to a cow’s kidney. The cocoa bean has several areas, and the inside of the cocoa bean before bursting has distinct lines. This write-up will go over the diverse parts of the cocoa bean and provide a fun way to discover a lot more about the phrase.
Alternative is high-priced
Replacing a car’s driveshaft can be an expensive affair, and it truly is not the only component that requirements servicing. A damaged generate shaft can also trigger other difficulties. This is why obtaining estimates from distinct repair shops is vital. Usually, a basic fix is more affordable than replacing the complete device. Detailed beneath are some tips for preserving funds when changing a driveshaft. Outlined below are some of the costs connected with repairs:
First, understand how to determine if your vehicle demands a driveshaft alternative. Ruined driveshaft parts can lead to intermittent or lack of power. Moreover, improperly mounted or assembled driveshaft elements can result in issues with the everyday operation of the automobile. Every time you suspect that your vehicle needs a driveshaft fix, find expert suggestions. A skilled mechanic will have the information and expertise essential to properly solve the issue.
Second, know which parts need servicing. Check the u-joint bushing. They need to be free of crumbs and not cracked. Also, check out the center assistance bearing. If this component is destroyed, the total push shaft wants to be replaced. Finally, know which areas to exchange. The upkeep expense of the travel shaft is considerably reduce than the upkeep value. Last but not least, establish if the fixed driveshaft is ideal for your motor vehicle.
If you suspect your driveshaft demands support, make an appointment with a restore shop as soon as attainable. If you are going through vibration and tough riding, driveshaft repairs may be the best way to avert expensive repairs in the foreseeable future. Also, if your auto is experiencing abnormal sounds and vibration, a driveshaft restore may possibly be a swift and straightforward answer. If you will not know how to diagnose a issue with your vehicle, you can consider it to a mechanic for an appointment and a quotation.